Difference Between Blue And White Ram Slots Average ratng: 5,9/10 4065 votes

The two slots circled in blue are what ya gpu/gpu's will be connected in/plugged in. the two slots circled in green are the PCI slots, can be either a soundcard or a network card, or perhaps other devices. the two slots circled in red are PCI-E slots, again can be either a soundcard or a network card, again other devices too. In fact, there is very little difference between one dual-ranked module and two single-rank modules when connected to the same memory controller, even though the memory chips reside on different PCBs.

A memory slot, memory socket, or RAM slot allows RAM (computer memory) to be inserted into the computer. Most motherboards have two to four memory slots, which determine the type of RAM used with the computer. The most common RAM types are SDRAM and DDR for desktop computers and SODIMM for laptop computers, each having various types and speeds. The picture below is an example of what memory slots may look like inside a desktop computer. In this picture, there are three open and available slots for three memory sticks.

When buying a new computer or motherboard, pay close attention to the types of RAM the memory slots can accept. Make sure you know exactly the type of RAM to buy for your computer. It is also important to note how many available memory slots are available in your computer. It is not uncommon for computers to have all memory slots occupied. If all slots are full and you want to upgrade the computer memory, you need to remove some or all of the existing memory.

Why are the memory slots different colors?

When a motherboard has different colored memory slots, it indicates the memory slots are dual-channel, and pairs of memory should be installed on the same channel (color). For example, a motherboard could have two yellow and two black memory slots. The yellow memory slots could indicate Channel A and Channel B could be indicated by the black slots. If you were only installing two memory sticks, you'd want to install both of them in Channel A (yellow slots) for optimal performance.

Related pages

Memory module, Memory terms

In the fields of digital electronics and computer hardware, multi-channel memory architecture is a technology that increases the data transfer rate between the DRAM memory and the memory controller by adding more channels of communication between them. Theoretically this multiplies the data rate by exactly the number of channels present. Dual-channel memory employs two channels. The technique goes back as far as the 1960s having been used in IBM System/360 Model 91 and in CDC 6600.[1]

Blue

Modern high-end processors like the IntelCore i9 and AMDRyzen Threadripper series, along with various Intel Xeons support quad-channel memory. In March 2010, AMD released Socket G34 and Magny-Cours Opteron 6100 series[2] processors with support for quad-channel memory. In 2006, Intel released chipsets that support quad-channel memory for its LGA771 platform[3] and later in 2011 for its LGA2011 platform.[4] Microcomputer chipsets with even more channels were designed; for example, the chipset in the AlphaStation 600 (1995) supports eight-channel memory, but the backplane of the machine limited operation to four channels.[5]

Difference Between Blue And White Ram Slots

Dual-channel architecture[edit]

Dual-channel memory slots, color-coded orange and yellow for this particular motherboard.

Dual-channel-enabled memory controllers in a PC system architecture use two 64-bit data channels. Dual-channel should not be confused with double data rate (DDR), in which data exchange happens twice per DRAM clock. The two technologies are independent of each other, and many motherboards use both by using DDR memory in a dual-channel configuration.

Operation[edit]

Dual-channel architecture requires a dual-channel-capable motherboard and two or more DDR, DDR2, DDR3, DDR4, or DDR5 memory modules. The memory modules are installed into matching banks, each of which belongs to a different channel. The motherboard's manual will provide an explanation of how to install memory for that particular unit. A matched pair of memory modules may usually be placed in the first bank of each channel, and a different-capacity pair of modules in the second bank.[6] Modules rated at different speeds can be run in dual-channel mode, although the motherboard will then run all memory modules at the speed of the slowest module. Some motherboards, however, have compatibility issues with certain brands or models of memory when attempting to use them in dual-channel mode. For this reason, it is generally advised to use identical pairs of memory modules, which is why most memory manufacturers now sell 'kits' of matched-pair DIMMs. Several motherboard manufacturers only support configurations where a 'matched pair' of modules are used. A matching pair needs to match in:

  • Capacity (e.g. 1024 MB). Certain Intel chipsets support different capacity chips in what they call Flex Mode: the capacity that can be matched is run in dual-channel, while the remainder runs in single-channel.
  • Speed (e.g. PC5300). If speed is not the same, the lower speed of the two modules will be used. Likewise, the higher latency of the two modules will be used.
  • Same CAS Latency (CL) or Column Address Strobe.
  • Number of chips and sides (e.g. two sides with four chips on each side).
  • Matching size of rows and columns.

Dual-channel architecture is a technology implemented on motherboards by the motherboard manufacturer and does not apply to memory modules. Theoretically any matched pair of memory modules may be used in either single- or dual-channel operation, provided the motherboard supports this architecture.

Performance[edit]

Theoretically, dual-channel configurations double the memory bandwidth when compared to single-channel configurations. This should not be confused with double data rate (DDR) memory, which doubles the usage of DRAM bus by transferring data both on the rising and falling edges of the memory bus clock signals.

A benchmark performed by TweakTown, using SiSoftware Sandra, measured around 70% increase in performance of a quadruple-channel configuration, when compared to a dual-channel configuration.[7]:p. 5 Other tests performed by TweakTown on the same subject showed no significant differences in performance, leading to a conclusion that not all benchmark software is up to the task of exploiting increased parallelism offered by the multi-channel memory configurations.[7]:p. 6

Ganged versus unganged[edit]

Dual-channel was originally conceived as a way to maximize memory throughput by combining two 64-bit buses into a single 128-bit bus.[disputed][citation needed] This is retrospectively called the 'ganged' mode. However, due to lackluster performance gains in consumer applications,[8] more modern implementations of dual-channel use the 'unganged' mode by default, which maintains two 64-bit memory buses but allows independent access to each channel, in support of multithreading with multi-core processors.[9][10]

'Ganged' versus 'unganged' difference could also be envisioned as an analogy with the way RAID 0 works, when compared to JBOD.[11] With RAID 0 (which is analogous to 'ganged' mode), it is up to the additional logic layer to provide better (ideally even) usage of all available hardware units (storage devices, or memory modules) and increased overall performance. On the other hand, with JBOD (which is analogous to 'unganged' mode) it is relied on the statistical usage patterns to ensure increased overall performance through even usage of all available hardware units.[9][10]

Triple-channel architecture[edit]

Operation[edit]

DDR3 triple-channel architecture is used in the IntelCore i7-900 series (the Intel Core i7-800 series only support up to dual-channel). The LGA 1366 platform (e.g. Intel X58) supports DDR3 triple-channel, normally 1333 and 1600Mhz, but can run at higher clock speeds on certain motherboards. AMD Socket AM3 processors do not use the DDR3 triple-channel architecture but instead use dual-channel DDR3 memory. The same applies to the Intel Core i3, Core i5 and Core i7-800 series, which are used on the LGA 1156 platforms (e.g., Intel P55). According to Intel, a Core i7 with DDR3 operating at 1066 MHz will offer peak data transfer rates of 25.6 GB/s when operating in triple-channel interleaved mode. This, Intel claims, leads to faster system performance as well as higher performance per watt.[12]

When operating in triple-channel mode, memory latency is reduced due to interleaving, meaning that each module is accessed sequentially for smaller bits of data rather than completely filling up one module before accessing the next one. Data is spread amongst the modules in an alternating pattern, potentially tripling available memory bandwidth for the same amount of data, as opposed to storing it all on one module.

The architecture can only be used when all three, or a multiple of three, memory modules are identical in capacity and speed, and are placed in three-channel slots. When two memory modules are installed, the architecture will operate in dual-channel architecture mode.[13]

Supporting processors[edit]

Intel Core i7:

  • Intel Core i7-9xx Bloomfield, Gulftown
  • Intel Core i7-9x0X Gulftown

Intel Xeon:

  • Intel Xeon E55xx Nehalem-EP
  • Intel Xeon E56xx Westmere-EP
  • Intel Xeon ECxxxx Jasper Forest
  • Intel Xeon L55xx Nehalem-EP
  • Intel Xeon L5609 Westmere-EP
  • Intel Xeon L5630 Westmere-EP
  • Intel Xeon L5640 Westmere-EP
  • Intel Xeon LC55x8 Jasper Forest
  • Intel Xeon Wxxxx Bloomfield, Nehalem-EP, Westmere-EP
  • Intel Xeon X55xx Nehalem-EP
  • Intel Xeon X56xx Westmere-EP[14][15]
  • Intel Xeon x4xx v3
  • Intel Pentium 14xx v3
  • Intel Xeon x4xx v2
  • Intel Pentium 14xx v2
  • Intel Xeon x4xx
  • Intel Pentium 14xx

Quad-channel architecture[edit]

Operation[edit]

Quad-channel DDR4 has replaced DDR3 on the Intel X99LGA 2011 platform, and is also used in AMD's Threadripper platform.[16]DDR3 quad-channel architecture is used in the AMDG34 platform and in the Intel X79LGA 2011 platform. AMD processors for the C32 platform and Intel processors for the LGA 1155 platform (e.g., Intel Z68) use dual-channel DDR3 memory instead.

The architecture can be used only when all four memory modules (or a multiple of four) are identical in capacity and speed, and are placed in quad-channel slots. When two memory modules are installed, the architecture will operate in a dual-channel mode; when three memory modules are installed, the architecture will operate in a triple-channel mode.[13]

Supporting processors[edit]

AMD Threadripper:

  • AMD Ryzen Threadripper 2nd gen 2990WX
  • AMD Ryzen Threadripper 3rd gen 3960X
  • AMD Ryzen Threadripper 3rd gen 3970X
  • AMD Ryzen Threadripper 3rd gen 3990X
  • AMD Ryzen Threadripper 2nd gen 2970WX
  • AMD Ryzen Threadripper 2nd gen 2950X
  • AMD Ryzen Threadripper 2nd gen 2920X
  • AMD Ryzen Threadripper 1950X
  • AMD Ryzen Threadripper 1920X
  • AMD Ryzen Threadripper 1900X

AMD Opteron:

  • Opteron 6100-series 'Magny-Cours' (45 nm)[2]
  • Opteron 6200-series 'Interlagos' (32 nm)[17]
  • Opteron 6300-series 'Abu Dhabi' (32 nm)[18]

Intel Core:

  • Intel Core i7-9800X
  • Intel Core i9-7900X
  • Intel Core i7-7820X
  • Intel Core i7-7800X
  • Intel Core i7-6950X
  • Intel Core i7-6900K
  • Intel Core i7-6850K
  • Intel Core i7-6800K
  • Intel Core i7-5960X
  • Intel Core i7-5930K
  • Intel Core i7-5820K
  • Intel Core i7-4960X
  • Intel Core i7-4930K
  • Intel Core i7-4820K
  • Intel Core i7-3970X
  • Intel Core i7-3960X
  • Intel Core i7-3930K
  • Intel Core i7-3820

Intel Xeon:

  • Intel Xeon E5-x6xx v4
  • Intel Xeon E7-x8xx v3
  • Intel Xeon E5-x6xx v3
  • Intel Xeon E7-x8xx v2
  • Intel Xeon E5-x6xx v2
  • Intel Xeon E7-x8xx
  • Intel Xeon E5-x6xx

Six-channel architecture[edit]

Supported by Qualcomm Centriq server processors[19], and Intel Xeon Scalable processors.[20]

Difference Between Blue And White Ram Slots Free

Eight-channel architecture[edit]

Supported by AMD Epyc and Cavium ThunderX2 server processors.[21][22]

See also[edit]

References[edit]

  1. ^Jacob, Bruce; Ng, Spencer; Wang, David (2007). Memory systems: cache, DRAM, disk. Morgan Kaufmann. p. 318. ISBN978-0-12-379751-3.
  2. ^ ab'Opteron 6000 Series Platform Quick Reference Guide'(PDF). AMD. Archived from the original(PDF) on 2012-05-12. Retrieved 2012-10-15.
  3. ^5000P memory controller, Intel.
  4. ^Intel LGA2011 socket x68 express chipset pictured, Tech power up.
  5. ^John H. Zurawski; John E. Murray; Paul J. Lemmon, 'The Design and Verification of the AlphaStation 600 5-series Workstation', HP, 7 (1).
  6. ^'Intel Dual-Channel DDR Memory Architecture White Paper'(PDF) (Rev. 1.0 ed.). Infineon Technologies North America and Kingston Technology. September 2003. Archived from the original(PDF, 1021 KB) on 2011-09-29. Retrieved 2007-09-06.
  7. ^ abShawn Baker (2011-11-16). 'Intel X79 Quad Channel and Z68 Dual Channel Memory Performance Analysis'. TweakTown. Retrieved 2013-11-30.
  8. ^'AMD Phenom X4 Memory Controller in the Ganged/ Unganged Mode'. ixbtlabs.com. 2008-08-16. Retrieved 2014-01-09.
  9. ^ abGionatan Danti (2010-06-17). 'The Phenom / PhenomII memory controller: ganged vs unganged mode benchmarked'. ilsistemista.net. Retrieved 2014-01-09.
  10. ^ ab'BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h Processors'(PDF). amd.com. 2013-01-11. pp. 107–108. Retrieved 2014-01-09. When the DCTs are in ganged mode, as specified by [The DRAM Controller Select Low Register] F2x110 [DctGangEn], then each logical DIMM is two channels wide. Each physical DIMM of a 2-channel logical DIMM is required to be the same size and use the same timing parameters. Both DCTs must be programmed with the same information (see 2.8.1 [DCT Configuration Registers]). When the DCTs are in unganged mode, a logical DIMM is equivalent to a 64-bit physical DIMM and each channel is controlled by a different DCT. Typical systems are recommended to run in unganged mode to benefit from the additional parallelism generated by using the DCTs independently. See 2.12.2 [DRAM Considerations for ECC] for DRAM ECC implications of ganged and unganged mode. Ganged mode is not supported for S1g3, S1g4, ASB2, and G34 processors.
  11. ^Rouse, Margaret (September 2005). 'JBOD (just a bunch of disks or just a bunch of drives)'. SearchStorage.TechTarget.com. Retrieved 2014-01-09.
  12. ^X58 Product Brief(PDF), Intel
  13. ^ abDesktop Boards – Triple Memory Modules, Intel, Single- and Multichannel Memory Modes
  14. ^'Core i7 Family Product Comparison'. Intel. Memory Specifications: # of Memory Channels.
  15. ^'Xeon Family Product Comparison'. Intel. Memory Specifications: # of Memory Channels.
  16. ^AMD Ryzen Threadripper And Vega Attack Prey At 4K, Quad GPUs Shred Blender, Radeon RX Vega Hits In July, '....with 16 cores and 32 threads with support for quad-channel DDR4 memory......'
  17. ^'AMD Opteron 6200 Series Processor Quick Reference Guide'(PDF). Retrieved 2012-10-15.
  18. ^'AMD Opteron 6300 Series processor Quick Reference Guide'(PDF). Retrieved 2013-12-11.
  19. ^Kennedy, Patrick (23 August 2017). 'Qualcomm Centriq 2400 ARM CPU from Hot Chips 29'. Serve The Home. Retrieved 14 November 2017.
  20. ^https://www.intel.in/content/www/in/en/products/processors/xeon/scalable/bronze-processors/bronze-3106.html
  21. ^Cutress, Ian (7 March 2017). 'AMD Prepares 32-Core Naples CPUs for 1P and 2P Servers: Coming in Q2'. Anandtech. Retrieved 7 March 2017.
  22. ^Kennedy, Patrick (9 November 2017). 'Cavium ThunderX2 and OCP Platform Details'. Serve the Home. Retrieved 14 November 2017.

External links[edit]

Difference Between Blue And White Ram Slots Online

  • 'Single, dual, triple and flex memory modes', Desktop motherboards support, Intel.
  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures, November 2011, Hardware Secrets
  • Memory Configuration Guide for X9 Series DP Motherboards – Revised Ivy Bridge Update (Socket R & B2), January 2014, Super Micro Computer, Inc.
  • DDR3 Memory Frequency Guide, May 2012, AMD (archived)

Difference Between Blue And White Ram Slots Slot

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Multi-channel_memory_architecture&oldid=979748184'